DocumentCode :
2685885
Title :
FEA based reliability prediction for different Sn-based solders subjected to fast shear and fatigue loadings
Author :
Dudek, Rainer ; Kaulfersch, Eberhard ; Rzepka, Sven ; Röllig, Mike ; Michel, Bernd
Author_Institution :
Micro Mater. Center Berlin & Chemnitz at Fraunhofer- IZM & ENAS, Berlin
fYear :
2008
fDate :
28-31 July 2008
Firstpage :
1
Lastpage :
7
Abstract :
Recent studies revealed that there is no simple ldquodrop inrdquo solution for the lead-free replacement of SnPb joints, instead different Sn-based solders are advantageous for different use conditions, which can be dominated either by drop loading or by thermal cyclic loading in harsh use conditions. By way of high-speed shear testing reliability assessments of components during drop and shock events can be studied in a simplified manner. Dynamic 3-D finite element simulations have been performed applying explicit FEA to replicate the shear tests virtually. It was shown in this way that SAC 1305 solder outperformed SAC 387 solder. The low cycle fatigue behavior of different SAC alloys is additionally of interest. Fatigue life predictions require both the constitutive description of the lead-free solders and a fatigue hypothesis linked to the material selected. Based on recently measured creep properties the solder joint creep strain and creep dissipation responses were analyzed for several components and thermal cycling conditions. The results based upon non-linear finite element calculations indicate different trends for creep strain and energy dissipation: while the first is clearly increasing with lowered alloying Ag-content, the latter is almost stable and does only slightly vary. Furthermore, these trends are different for different test- and field cycling conditions as well as the different components studied.
Keywords :
copper alloys; creep; fatigue; fatigue testing; finite element analysis; reliability; silver alloys; soldering; solders; thermal stress cracking; tin alloys; FEA based reliability prediction; SAC 1305 solder; SAC 387 solder; Sn-based solder; SnAgCu; creep dissipation response; dynamic 3-D finite element simulations; energy dissipation; fast shear loading; fatigue life; fatigue loading; high-speed shear testing; nonlinear finite element calculations; solder joint creep strain; thermal cycling; thermal fatigue; Creep; Electric shock; Environmentally friendly manufacturing techniques; Fatigue; Finite element methods; Lead; Performance evaluation; Strain measurement; Testing; Thermal loading; Lead-free SACxx solders; creep modeling; fast shear test modeling; finite element analysis; lifetime prediction; solder fatigue;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Electronic Packaging Technology & High Density Packaging, 2008. ICEPT-HDP 2008. International Conference on
Conference_Location :
Shanghai
Print_ISBN :
978-1-4244-2739-0
Electronic_ISBN :
978-1-4244-2740-6
Type :
conf
DOI :
10.1109/ICEPT.2008.4606962
Filename :
4606962
Link To Document :
بازگشت