Title :
Vehicle tracking based on co-learning particle filter
Author :
Ye, Weilong ; Liu, Huaping ; Sun, Fuchun ; Gao, Meng
Author_Institution :
Dept. of Comput. Sci. & Technol., Tsinghua Univ., Beijing, China
Abstract :
In this paper, we propose a co-learning particle filter approach for vehicle tracking, which is very important for intelligent vehicle. The proposal distribution of the particle filter is a combination of an extra support vector machine (SVM) detector and the motion prior. Previous works focusing on how to online update the detector or the observation likelihood using the tracking results. These approaches belong to ¿self-learning¿ fashion and easily tend to drift. The major difference between the proposed approach and previous works is that the SVM detector and the likelihood function can be mutually updated in a co-learning manner. By adopting the co-learning technology, the unlabelled samples which are generated during tracking are utilized to progressively modify the SVM detector and update the observation likelihood; therefore the resulting tracker is more robust and effectively avoids the drift problem. Finally, the performance of the proposed approach is evaluated using extensive real visual tracking examples.
Keywords :
automobiles; intelligent robots; learning (artificial intelligence); mobile robots; particle filtering (numerical methods); support vector machines; tracking; co-learning particle filter; intelligent vehicle; mobile robot; support vector machine detector; vehicle tracking; Detectors; Intelligent robots; Intelligent vehicles; Particle filters; Particle tracking; Proposals; Radar tracking; Semisupervised learning; Sun; Support vector machines;
Conference_Titel :
Intelligent Robots and Systems, 2009. IROS 2009. IEEE/RSJ International Conference on
Conference_Location :
St. Louis, MO
Print_ISBN :
978-1-4244-3803-7
Electronic_ISBN :
978-1-4244-3804-4
DOI :
10.1109/IROS.2009.5354574