DocumentCode :
2688323
Title :
An algorithm of Bayesian Networks parameters learning based on confidence interval
Author :
Tilong Wang ; Guo, Lihong ; Li, Yan
Author_Institution :
Changchun Inst. of Opt., Fine Mech. & Phys., Chinese Acad. of Sci., Changchun, China
Volume :
1
fYear :
2010
fDate :
24-26 Aug. 2010
Firstpage :
233
Lastpage :
235
Abstract :
This paper focuses on an interval parameter estimation of Bayesian Networks (BNs). Contrast to the point estimation used in most parameter learning algorithms, interval estimation algorithm (IEA) estimates the output nodes parameter of BNs with an interval estimation based on confidence level, it can raise BNs inference accuracy slightly as the prior knowledge is absence.
Keywords :
belief networks; learning (artificial intelligence); parameter estimation; Bayesian network parameter learning; confidence interval; interval parameter estimation; Algorithm design and analysis; Bayesian methods; Convergence; Bayesian networks; confidence interval estimation; parameter learning;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Computer, Mechatronics, Control and Electronic Engineering (CMCE), 2010 International Conference on
Conference_Location :
Changchun
Print_ISBN :
978-1-4244-7957-3
Type :
conf
DOI :
10.1109/CMCE.2010.5610479
Filename :
5610479
Link To Document :
بازگشت