Title :
Runtime analysis of (1+l) EA on computing unique input output sequences
Author :
Lehre, Per Kristian ; Yao, Xin
Author_Institution :
Univ. of Birmingham, Birmingham
Abstract :
Computing unique input output (UIO) sequences is a fundamental and hard problem in conformance testing of finite state machines (FSM). Previous experimental research has shown that evolutionary algorithms (EAs) can be applied successfully to find UIOs on some instances. However, before EAs can be recommended as a practical technique for computing UIOs, it is necessary to better understand the potential and limitations of these algorithms on this problem. In particular, more research is needed in determining for what instances of the problem EAs are feasible. This paper presents a rigorous runtime analysis of the (1+1) EA on three classes of instances of this problem. First, it is shown that there are instances where the EA is efficient, while random testing fails completely. Secondly, an instance class that is difficult for both random testing and the EA is presented. Finally, a parametrised instance class with tunable difficulty is presented. Together, these results provide a first theoretical characterisation of the potential and limitations of the (1+1) EA on the problem of computing UIOs.
Keywords :
conformance testing; evolutionary computation; finite state machines; program diagnostics; program testing; conformance testing; evolutionary algorithm; finite state machine; random testing; runtime analysis; unique input output sequence computation; Algorithm design and analysis; Application software; Automata; Computational intelligence; Computer science; Evolutionary computation; Runtime; Software engineering; Software systems; Testing;
Conference_Titel :
Evolutionary Computation, 2007. CEC 2007. IEEE Congress on
Conference_Location :
Singapore
Print_ISBN :
978-1-4244-1339-3
Electronic_ISBN :
978-1-4244-1340-9
DOI :
10.1109/CEC.2007.4424703