DocumentCode :
2691837
Title :
A Modified MapReduce Framework for Cloud Computing
Author :
Zeng, Lingying ; Lin, Hao Wen
Author_Institution :
Shenzhen Grad. Sch., Harbin Inst. of Technol., Shenzhen, China
fYear :
2012
fDate :
7-9 July 2012
Firstpage :
277
Lastpage :
280
Abstract :
Due to the heterogeneous, opaqueness and dynamic nature of Cloud Computing, existing MapReduce approach is not suitable for perform Parallel Computing on the cloud. In this paper, we propose a modified MapReduce framework which extracts the physical network topology information from the Virtual Machine Monitor (VMM) feature of VMs, in order to exploit dynamic resource allocations, and hence enable effective Parallel Computing within the cloud environment.
Keywords :
cloud computing; parallel processing; resource allocation; virtual machines; MapReduce framework; VMM; cloud computing; dynamic resource allocations; parallel computing; physical network topology information extraction; virtual machine monitor; Cloud computing; Computers; Data mining; Delay; Heart beat; Network topology; Topology; Cloud Computing; MapReduce; Parallel Computing; Virtual Machine;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Computing, Measurement, Control and Sensor Network (CMCSN), 2012 International Conference on
Conference_Location :
Taiyuan
Print_ISBN :
978-1-4673-2033-7
Type :
conf
DOI :
10.1109/CMCSN.2012.67
Filename :
6245866
Link To Document :
بازگشت