DocumentCode :
2691928
Title :
A Tuning Scheme for Parameters of Generalized Predictive Controller Based on Mind Evolutionary Algorithm
Author :
Guo, Hongge ; Xie, Keming
Author_Institution :
Coll. of Inf. Eng., Taiyuan Univ. of Technol., Taiyuan, China
fYear :
2012
fDate :
7-9 July 2012
Firstpage :
307
Lastpage :
310
Abstract :
This paper presents a scheme that the Mind Evolutionary Algorithm (MEA) tunes adaptively parameters of the generalized predictive controller. The value domain of parameters constitutes the solution space of MEA. The cost function of Generalized Predictive Control (GPC), the maximum value of the system output and its decay speed constitute the fitness function of MEA. During the control process, MEA adjusts constantly parameters so that the rapidity and robustness of GPC can be improved. Optimum experiments and simulation experiments show the scheme effectiveness and feasibility.
Keywords :
evolutionary computation; predictive control; cost function; generalized predictive controller; mind evolutionary algorithm; solution space; tuning scheme; Aerospace electronics; Educational institutions; Evolutionary computation; Mathematical model; Predictive control; Robustness; Tuning; Adaption; Generalized Predictive Control; Mind Evolutionary Algorithm; Tuning Parameters;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Computing, Measurement, Control and Sensor Network (CMCSN), 2012 International Conference on
Conference_Location :
Taiyuan
Print_ISBN :
978-1-4673-2033-7
Type :
conf
DOI :
10.1109/CMCSN.2012.74
Filename :
6245873
Link To Document :
بازگشت