Title :
Selection of regularisation parameters for total variation denoising
Author_Institution :
Dept. of Stat., Macquarie Univ., North Ryde, NSW, Australia
Abstract :
We apply a general procedure of the author to choose penalty parameters in total variation denoising. This is an automatic method of tuning parameter choice for total variation denoising. The method is computationally much simpler than cross-validation
Keywords :
noise; parameter estimation; signal reconstruction; automatic method; computational complexity; cross-validation; penalty parameters; reconstruction performance measure; regularisation parameters selection; total variation denoising; tuning parameter choice; Anisotropic magnetoresistance; Bandwidth; Convergence; Equations; Inverse problems; Iterative algorithms; Maximum likelihood estimation; Noise reduction; Optimization methods; Statistics;
Conference_Titel :
Acoustics, Speech, and Signal Processing, 1999. Proceedings., 1999 IEEE International Conference on
Conference_Location :
Phoenix, AZ
Print_ISBN :
0-7803-5041-3
DOI :
10.1109/ICASSP.1999.756309