Title :
Joint Model Selection and Parameter Estimation of GTD Model using RJ-MCMC Algorithm
Author :
Zhiguang, Shi ; Jianxiong, Zhou ; Hongzhong, Zhao ; Qiang, Fu
Author_Institution :
ATR Lab., National Univ. of Defence Technol., Changsha
Abstract :
The Bayes principle is applied to the joint model selection and parameter estimation of GTD model to explore the prior information. An algorithm using RJ-MCMC is designed. It not only has better model selection and parameter estimation performance than the non-Bayes algorithms, but also solves the mixed parameter estimation problem in GTD model effectively. The advantage of this algorithm is especially evident at low SNR, for short data and with closely-spaced components. Simulations verify the effectiveness of this algorithm.
Keywords :
Bayes methods; Markov processes; Monte Carlo methods; geometrical theory of diffraction; parameter estimation; radar signal processing; Bayes principle; RJ-MCMC algorithm; joint model selection; parameter estimation; reversible jump Markov chain Monte Carlo solutions; Electromagnetic modeling; Electromagnetic scattering; Frequency; Laser radar; Optical scattering; Parameter estimation; Radar scattering; Scattering parameters; Signal processing algorithms; Solid modeling; Bayes principle; GTD model; RJ-MCMC; model order selection; parameter estimation;
Conference_Titel :
Acoustics, Speech and Signal Processing, 2007. ICASSP 2007. IEEE International Conference on
Conference_Location :
Honolulu, HI
Print_ISBN :
1-4244-0727-3
Electronic_ISBN :
1520-6149
DOI :
10.1109/ICASSP.2007.366795