Title :
Segmentation of Polarimetric SAR Data based on the Fisher Distribution for Texture Modeling
Author :
Bombrun, Lionel ; Beaulieu, Jean-Marie
Author_Institution :
INPG, Grenoble Image Parole Signal et Autom., CNRS, St. Martin d´´Heres
Abstract :
The Polarimetric Synthetic Aperture Radar (PolSAR) covariance matrix is generally modeled by a complex Wishart distribution. For textured scenes, the product model is used and the texture component is often modeled by a Gamma distribution. In this paper, authors propose to use the Fisher distribution for texture modeling. From a Fisher distributed texture component, we derive the distribution of the complex covariance matrix and we propose to implement the KummerU distribution in a hierarchical segmentation and a hierarchical clustering algorithm. Segmentation and classification results are shown on synthetic images and on ESAR L-band PolSAR data over the Oberpfaffenhofen test-site.
Keywords :
covariance matrices; geophysical techniques; geophysics computing; image classification; image segmentation; image texture; radar polarimetry; remote sensing by radar; synthetic aperture radar; ESAR L-band PolSAR data; Fisher distribution; Gamma distribution; KummerU distribution; Oberpfaffenhofen test-site; Polarimetric Synthetic Aperture Radar data; complex Wishart distribution; covariance matrix; hierarchical clustering algorithm; hierarchical segmentation; image classification; texture component; texture modeling; Clustering algorithms; Covariance matrix; Electromagnetic scattering; Image segmentation; L-band; Layout; Polarization; Radar scattering; Receiving antennas; Speckle; Classification; Fisher distribution; KummerU; Polarimetric SAR images; Segmentation; Texture;
Conference_Titel :
Geoscience and Remote Sensing Symposium, 2008. IGARSS 2008. IEEE International
Conference_Location :
Boston, MA
Print_ISBN :
978-1-4244-2807-6
Electronic_ISBN :
978-1-4244-2808-3
DOI :
10.1109/IGARSS.2008.4780100