Title :
Object Tracking by Oversampling Local Features
Author :
Pernici, Federico ; Del Bimbo, Alberto
Author_Institution :
Media Integration & Commun. Center (MICC), Univ. of Florence, Florence, Italy
Abstract :
In this paper, we present the ALIEN tracking method that exploits oversampling of local invariant representations to build a robust object/context discriminative classifier. To this end, we use multiple instances of scale invariant local features weakly aligned along the object template. This allows taking into account the 3D shape deviations from planarity and their interactions with shadows, occlusions, and sensor quantization for which no invariant representations can be defined. A non-parametric learning algorithm based on the transitive matching property discriminates the object from the context and prevents improper object template updating during occlusion. We show that our learning rule has asymptotic stability under mild conditions and confirms the drift-free capability of the method in long-term tracking. A real-time implementation of the ALIEN tracker has been evaluated in comparison with the state-of-the-art tracking systems on an extensive set of publicly available video sequences that represent most of the critical conditions occurring in real tracking environments. We have reported superior or equal performance in most of the cases and verified tracking with no drift in very long video sequences.
Keywords :
image classification; image matching; image sequences; object tracking; video signal processing; 3D shape deviations; ALIEN tracking method; local invariant representations; nonparametric learning algorithm; object template; object tracking; occlusions; robust object/context discriminative classifier; scale invariant local features; sensor quantization; transitive matching; video sequences; Context modeling; Detectors; Feature extraction; Object recognition; Search problems; Target tracking; Tracking; Computer vision; Feature representation; Invariants; Motion; Tracking; Visual real-time tracking; learning from video; local feature invariance; long-term tracking; template update;
Journal_Title :
Pattern Analysis and Machine Intelligence, IEEE Transactions on
DOI :
10.1109/TPAMI.2013.250