DocumentCode :
2698135
Title :
Ensemble Data Assimilation Simulation Experiments for the Coastal Ocean: Impact of Different Observed Variables
Author :
Hoffman, R. ; Ponte, R.M. ; Kostelich, E. ; Blumberg, A. ; Szunyogh, I. ; Vinogradov, S.V.
Author_Institution :
Atmos. & Environ. Res., Inc., Lexington, MA
Volume :
5
fYear :
2008
fDate :
7-11 July 2008
Abstract :
A coastal ocean data assimilation system tested in simulation earlier is examined for sensitivity to the different types of observational data. The system couples an advanced ensemble Kalman filter algorithm to a detailed and sophisticated primitive equations coastal ocean model. It is found that assimilating only one type of data, say temperature, greatly slows down the approach to asymptotic behavior of the analysis of the other variables. Assimilating temperature alone does not help to infer salinity and vice versa.
Keywords :
Kalman filters; data assimilation; geophysical signal processing; ocean temperature; oceanographic techniques; seawater; sensitivity analysis; ensemble Kalman filter algorithm; ensemble data assimilation simulation; ocean temperature; primitive equations coastal ocean model; salinity; sensitivity analysis; Atmospheric modeling; Data assimilation; Error analysis; Filtering; Kalman filters; Mathematics; Ocean temperature; Sea measurements; Sea surface; Statistics; Kalman filtering; coastal ocean model; data assimilation; data impact;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Geoscience and Remote Sensing Symposium, 2008. IGARSS 2008. IEEE International
Conference_Location :
Boston, MA
Print_ISBN :
978-1-4244-2807-6
Electronic_ISBN :
978-1-4244-2808-3
Type :
conf
DOI :
10.1109/IGARSS.2008.4780123
Filename :
4780123
Link To Document :
بازگشت