• DocumentCode
    2698613
  • Title

    Using geometric properties for correspondence-less image alignment

  • Author

    Govindu, Venu ; Shekhar, Chandra ; Chellappa, Rama

  • Author_Institution
    Center for Autom. Res., Maryland Univ., College Park, MD, USA
  • Volume
    1
  • fYear
    1998
  • fDate
    16-20 Aug 1998
  • Firstpage
    37
  • Abstract
    We describe a framework for image alignment that does not use explicit feature correspondences. We show how certain geometric properties of image contours are related to the parameters of the geometric transformation between the images. For a transformation model, we show how to recover the transformation parameters using simple statistical distributions of geometric properties. The use of these statistical descriptions eliminates the need for establishing explicit feature correspondence. The proposed method is robust to problems of occlusion, clutter and errors in low-level processing. We demonstrate the effectiveness of our method on real images
  • Keywords
    computational geometry; edge detection; image registration; statistical analysis; transforms; clutter; geometric transformation; image alignment; image contours; occlusion; statistical distributions; Automation; Educational institutions; Equations; Goniometers; Image sensors; Layout; Robustness; Sensor phenomena and characterization; Solid modeling; Statistical distributions;
  • fLanguage
    English
  • Publisher
    ieee
  • Conference_Titel
    Pattern Recognition, 1998. Proceedings. Fourteenth International Conference on
  • Conference_Location
    Brisbane, Qld.
  • ISSN
    1051-4651
  • Print_ISBN
    0-8186-8512-3
  • Type

    conf

  • DOI
    10.1109/ICPR.1998.711074
  • Filename
    711074