DocumentCode :
2698613
Title :
Using geometric properties for correspondence-less image alignment
Author :
Govindu, Venu ; Shekhar, Chandra ; Chellappa, Rama
Author_Institution :
Center for Autom. Res., Maryland Univ., College Park, MD, USA
Volume :
1
fYear :
1998
fDate :
16-20 Aug 1998
Firstpage :
37
Abstract :
We describe a framework for image alignment that does not use explicit feature correspondences. We show how certain geometric properties of image contours are related to the parameters of the geometric transformation between the images. For a transformation model, we show how to recover the transformation parameters using simple statistical distributions of geometric properties. The use of these statistical descriptions eliminates the need for establishing explicit feature correspondence. The proposed method is robust to problems of occlusion, clutter and errors in low-level processing. We demonstrate the effectiveness of our method on real images
Keywords :
computational geometry; edge detection; image registration; statistical analysis; transforms; clutter; geometric transformation; image alignment; image contours; occlusion; statistical distributions; Automation; Educational institutions; Equations; Goniometers; Image sensors; Layout; Robustness; Sensor phenomena and characterization; Solid modeling; Statistical distributions;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Pattern Recognition, 1998. Proceedings. Fourteenth International Conference on
Conference_Location :
Brisbane, Qld.
ISSN :
1051-4651
Print_ISBN :
0-8186-8512-3
Type :
conf
DOI :
10.1109/ICPR.1998.711074
Filename :
711074
Link To Document :
بازگشت