DocumentCode :
2699712
Title :
Parameter Estimation of Positive Alpha-Stable Distribution Based on Negative-Order Moments
Author :
Zengguo Sun ; Chongzhao Han
Author_Institution :
Sch. of Electron. & Inf. Eng., Xi´an Jiaotong Univ., China
Volume :
3
fYear :
2007
fDate :
15-20 April 2007
Abstract :
Positive alpha-stable distribution is used to model the nonnegative quantity with impulsive property. Based on negative-order moments, three methods are used to estimate the parameters of positive alpha-stable distribution in this paper. First, a ratio estimator based on the ratio of negative-order moments is presented whose performance is significantly determined by the choice of order. Second, a new estimator with explicit closed form is presented and it is shown to be robust compared to the ratio estimator. Last, an iterative estimator is proposed and it achieves better performance only using fewer samples in each step computation. Monte Carlo simulation results demonstrate that the proposed iterative estimator is high efficient for the positive alpha-stable distribution.
Keywords :
Monte Carlo methods; iterative methods; parameter estimation; signal processing; Monte Carlo simulation; impulsive signals; iterative estimator; negative-order moments; parameter estimation; positive alpha-stable distribution; Acoustic noise; Atmospheric modeling; Degradation; Low-frequency noise; Noise shaping; Parameter estimation; Robustness; Signal to noise ratio; Sun; Underwater acoustics; Monte Carlo simulation; Positive alpha-stable distribution; iterative parameter estimator; negative-order moments; symmetric alpha-stable distribution;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Acoustics, Speech and Signal Processing, 2007. ICASSP 2007. IEEE International Conference on
Conference_Location :
Honolulu, HI
ISSN :
1520-6149
Print_ISBN :
1-4244-0727-3
Type :
conf
DOI :
10.1109/ICASSP.2007.367110
Filename :
4217983
Link To Document :
بازگشت