Title :
A nonlinear diffusion equation as a fast and optimal solver of edge detection problems
Author :
Pollak, Ilya ; Willsky, Alan S. ; Krim, Hamid
Author_Institution :
Lab. for Inf. & Decision Syst., MIT, Cambridge, MA, USA
Abstract :
A nonlinear diffusion process known to be effective for image segmentation is analyzed in 1-D. It is shown that it optimally solves certain edge detection problems. A fast implementation of the algorithm is introduced
Keywords :
edge detection; image segmentation; maximum likelihood detection; maximum likelihood estimation; nonlinear differential equations; optimisation; partial differential equations; algorithm; edge detection problems; fast implementation; fast solver; image segmentation; maximum likelihood solutions; nonlinear diffusion equation; nonlinear diffusion filtering; nonlinear partial differential equations; optimal solver; Differential equations; Diffusion processes; Image analysis; Image edge detection; Image restoration; Image segmentation; Information analysis; Laboratories; Nonlinear equations; Smoothing methods;
Conference_Titel :
Acoustics, Speech, and Signal Processing, 1999. Proceedings., 1999 IEEE International Conference on
Conference_Location :
Phoenix, AZ
Print_ISBN :
0-7803-5041-3
DOI :
10.1109/ICASSP.1999.757584