DocumentCode :
270969
Title :
Scaled-Distance-Transforms and Monotonicity of Autocorrelations
Author :
Bouchot, Jean-Luc ; Morain-Nicolier, Frédéric
Author_Institution :
Dept. of Math., Drexel Univ., Philadelphia, PA, USA
Volume :
21
Issue :
10
fYear :
2014
fDate :
Oct. 2014
Firstpage :
1235
Lastpage :
1239
Abstract :
In this letter, we investigate the use of distance transforms in a scale space domain for the image (and signal) misalignment problem. We show that it is possible to build an autocorrelation function that is monotonic with respect to the amount of translation. This creates a new paradigm for image comparison and gives yet a new generalization of distance transforms to grey-level images. Its behavior is analyzed on a natural scene image and its robustness against noise is verified numerically.
Keywords :
image registration; stereo image processing; transforms; autocorrelation function; grey-level images; image misalignment problem; image registration; monotonicity; natural scene image; scaled-distance-transforms; stereo vision; Correlation; Image edge detection; Measurement; Neurons; Robustness; Transforms; Vectors; Autocorrelation; Hausdorff measure; distance transforms; misalignment; scale-space;
fLanguage :
English
Journal_Title :
Signal Processing Letters, IEEE
Publisher :
ieee
ISSN :
1070-9908
Type :
jour
DOI :
10.1109/LSP.2014.2325407
Filename :
6817519
Link To Document :
بازگشت