Title :
Long-term prediction of time series by combining direct and MIMO strategies
Author :
Ben Taieb, S. ; Bontempi, Gianluca ; Sorjamaa, Antti ; Lendasse, Amaury
Author_Institution :
Comput. Sci. Dept., Univ. Libre de Bruxelles, Brussels, Belgium
Abstract :
Reliable and accurate prediction of time series over large future horizons has become the new frontier of the forecasting discipline. Current approaches to long-term time series forecasting rely either on iterated predictors, direct predictors or, more recently, on the multi-input multi-output (MIMO) predictors. The iterated approach suffers from the accumulation of errors, the Direct strategy makes a conditional independence assumption, which does not necessarily preserve the stochastic properties of the time series, while the MIMO technique is limited by the reduced flexibility of the predictor. The paper compares the direct and MIMO strategies and discusses their respective limitations to the problem of long-term time series prediction. It also proposes a new methodology that is a sort of intermediate way between the Direct and the MIMO technique. The paper presents the results obtained with the ESTSP 2007 competition dataset.
Keywords :
MIMO systems; forecasting theory; iterative methods; predictive control; stochastic processes; time series; ESTSP 2007 competition dataset; MIMO strategy; direct predictors; direct strategy; forecasting discipline; iterated predictors; multi-input multi-output predictors; stochastic property; time series; Computational intelligence; Computer science; MIMO; Machine learning; Neural networks; Predictive models; Recurrent neural networks; Stochastic processes;
Conference_Titel :
Neural Networks, 2009. IJCNN 2009. International Joint Conference on
Conference_Location :
Atlanta, GA
Print_ISBN :
978-1-4244-3548-7
Electronic_ISBN :
1098-7576
DOI :
10.1109/IJCNN.2009.5178802