DocumentCode :
271044
Title :
Gallium Nitride as an Electromechanical Material
Author :
Rais-Zadeh, Mina ; Gokhale, Vikrant Jayant ; Ansari, A. ; Faucher, Marc ; Théron, Didier ; Cordier, Yvon ; Buchaillot, Lionel
Author_Institution :
Univ. of Michigan, Ann Arbor, MI, USA
Volume :
23
Issue :
6
fYear :
2014
fDate :
Dec. 2014
Firstpage :
1252
Lastpage :
1271
Abstract :
Gallium nitride (GaN) is a wide bandgap semiconductor material and is the most popular material after silicon in the semiconductor industry. The prime movers behind this trend are LEDs, microwave, and more recently, power electronics. New areas of research also include spintronics and nanoribbon transistors, which leverage some of the unique properties of GaN. GaN has electron mobility comparable with silicon, but with a bandgap that is three times larger, making it an excellent candidate for high-power applications and high-temperature operation. The ability to form thin-AlGaN/GaN heterostructures, which exhibit the 2-D electron gas phenomenon leads to high-electron mobility transistors, which exhibit high Johnson´s figure of merit. Another interesting direction for GaN research, which is largely unexplored, is GaN-based micromechanical devices or GaN microelectromechanical systems (MEMS). To fully unlock the potential of GaN and realize new advanced all-GaN integrated circuits, it is essential to cointegrate passive devices (such as resonators and filters), sensors (such as temperature and gas sensors), and other more than Moore functional devices with GaN active electronics. Therefore, there is a growing interest in the use of GaN as a mechanical material. This paper reviews the electromechanical, thermal, acoustic, and piezoelectric properties of GaN, and describes the working principle of some of the reported high-performance GaN-based microelectromechanical components. It also provides an outlook for possible research directions in GaN MEMS.
Keywords :
III-V semiconductors; acoustics; gallium compounds; micromechanical devices; piezoelectricity; thermal properties; wide band gap semiconductors; 2D electron gas phenomenon; GaN; MEMS; acoustic properties; electromechanical material; high electron mobility transistors; piezoelectric properties; thermal properties; wide bandgap semiconductor; Gallium nitride; III-V semiconductor materials; Silicon; Stress; Substrates; Temperature measurement; HEMT; III-V; microelectromechanical systems; micromachining; piezoelectric materials; resonators; wide bandgap;
fLanguage :
English
Journal_Title :
Microelectromechanical Systems, Journal of
Publisher :
ieee
ISSN :
1057-7157
Type :
jour
DOI :
10.1109/JMEMS.2014.2352617
Filename :
6895237
Link To Document :
بازگشت