Title :
Typical Behavior Patterns Extraction and Anomaly Detection Algorithm Based on Accumulated Home Sensor Data
Author :
Mori, Taketoshi ; Fujii, A. ; Shimosaka, M. ; Noguchi, H. ; Sato, T.
Author_Institution :
Univ. of Tokyo, Tokyo
Abstract :
In this paper, we propose a method consists of two components, behavior patterns extraction and anomaly detection algorithm in daily life. To begin with, sensor data are accumulated in a room environment and behavior description labels are assigned for each data segment using HMM(hidden Markov model) and k-means method. An HMM is composed every day based on sensor data segments of the day. The behavior description label at each time segment is determined by likelihood of the segment computed using the HMM. In anomaly detection step, typical behavior sequences are acquired using probabilistic density of behavior occurrence and behavior successive time. Each probabilistic density is composed based on accumulating labeled- data using sequential discounting Laplace estimation and sequential discounting expectation and maximization algorithms. When a new datum comes, if typical behavior data change largely, the data is detected as anomaly. The proposed method is verified by a long-time activity detection sensor data taken at a house of elderly person.
Keywords :
hidden Markov models; home computing; maximum likelihood estimation; probability; wireless sensor networks; accumulated home sensor data; anomaly detection algorithm; behavior description labels; behavior patterns extraction; hidden Markov model; k-means method; long-time activity detection sensor data; maximization algorithms; probabilistic density; room environment; sensor data segments; sequential discounting Laplace estimation; sequential discounting expectation; Change detection algorithms; Data mining; Detection algorithms; Hidden Markov models; Intelligent sensors; Object detection; Rhythm; Senior citizens; Sensor phenomena and characterization; Sensor systems;
Conference_Titel :
Future Generation Communication and Networking (FGCN 2007)
Conference_Location :
Jeju
Print_ISBN :
0-7695-3048-6
DOI :
10.1109/FGCN.2007.226