Title :
Random walks based multi-image segmentation: Quasiconvexity results and GPU-based solutions
Author :
Collins, Maxwell D. ; Xu, Jia ; Grady, Leo ; Singh, Vikas
Author_Institution :
Univ. of Wisconsin-Madison, Madison, WI, USA
Abstract :
We recast the Cosegmentation problem using Random Walker (RW) segmentation as the core segmentation algorithm, rather than the traditional MRF approach adopted in the literature so far. Our formulation is similar to previous approaches in the sense that it also permits Cosegmentation constraints (which impose consistency between the extracted objects from ≥ 2 images) using a nonparametric model. However, several previous nonparametric cosegmentation methods have the serious limitation that they require adding one auxiliary node (or variable) for every pair of pixels that are similar (which effectively limits such methods to describing only those objects that have high entropy appearance models). In contrast, our proposed model completely eliminates this restrictive dependence - the resulting improvements are quite significant. Our model further allows an optimization scheme exploiting quasiconvexity for model-based segmentation with no dependence on the scale of the segmented foreground. Finally, we show that the optimization can be expressed in terms of linear algebra operations on sparse matrices which are easily mapped to GPU architecture. We provide a highly specialized CUDA library for Cosegmentation exploiting this special structure, and report experimental results showing these advantages.
Keywords :
entropy; feature extraction; graphics processing units; image segmentation; linear algebra; optimisation; random processes; sparse matrices; CUDA library; GPU architecture; GPU-based solution; RW segmentation; cosegmentation constraint; cosegmentation problem; entropy appearance model; foreground segmentation; linear algebra; model-based segmentation; multiimage segmentation; nonparametric cosegmentation; nonparametric model; object extraction; optimization scheme; quasiconvexity; random walker; sparse matrix; Computational modeling; Face; Graphics processing unit; Histograms; Image segmentation; Optimization; Sparse matrices;
Conference_Titel :
Computer Vision and Pattern Recognition (CVPR), 2012 IEEE Conference on
Conference_Location :
Providence, RI
Print_ISBN :
978-1-4673-1226-4
Electronic_ISBN :
1063-6919
DOI :
10.1109/CVPR.2012.6247859