DocumentCode :
2715812
Title :
Efficient online structured output learning for keypoint-based object tracking
Author :
Hare, Sam ; Saffari, Amir ; Torr, Philip H S
Author_Institution :
Oxford Brookes Univ., Oxford, UK
fYear :
2012
fDate :
16-21 June 2012
Firstpage :
1894
Lastpage :
1901
Abstract :
Efficient keypoint-based object detection methods are used in many real-time computer vision applications. These approaches often model an object as a collection of keypoints and associated descriptors, and detection then involves first constructing a set of correspondences between object and image keypoints via descriptor matching, and subsequently using these correspondences as input to a robust geometric estimation algorithm such as RANSAC to find the transformation of the object in the image. In such approaches, the object model is generally constructed offline, and does not adapt to a given environment at runtime. Furthermore, the feature matching and transformation estimation stages are treated entirely separately. In this paper, we introduce a new approach to address these problems by combining the overall pipeline of correspondence generation and transformation estimation into a single structured output learning framework. Following the recent trend of using efficient binary descriptors for feature matching, we also introduce an approach to approximate the learned object model as a collection of binary basis functions which can be evaluated very efficiently at runtime. Experiments on challenging video sequences show that our algorithm significantly improves over state-of-the-art descriptor matching techniques using a range of descriptors, as well as recent online learning based approaches.
Keywords :
computer vision; estimation theory; geometry; image matching; learning (artificial intelligence); object detection; object tracking; RANSAC; associated descriptors; descriptor matching; image keypoints; keypoint-based object detection; keypoint-based object tracking; object keypoints; online structured output learning; real-time computer vision; robust geometric estimation algorithm; Adaptation models; Approximation algorithms; Computational modeling; Estimation; Object detection; Training; Vectors;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Computer Vision and Pattern Recognition (CVPR), 2012 IEEE Conference on
Conference_Location :
Providence, RI
ISSN :
1063-6919
Print_ISBN :
978-1-4673-1226-4
Electronic_ISBN :
1063-6919
Type :
conf
DOI :
10.1109/CVPR.2012.6247889
Filename :
6247889
Link To Document :
بازگشت