Title :
A linear semantics for allowed logic programs
Author :
Cerrito, Serenella
Author_Institution :
LRI, Paris Univ., Orsay, France
Abstract :
A declarative semantics for the class of allowed logic programs is proposed. Such a semantics is a logical theory, the linear completion of the program P, which differs from Clark´s completion because the underlying logic is linear logic rather than classical logic. With respect to such a semantics, the soundness and completeness of SLDNF-resolution is proven. That is, it is proven that the computational notion of success of an allowed query Q for an allowed program P corresponds to the provability of an instantiation of Q in the linear completion of P, and the notion of failure to the provability of the (linear) negation of Q in the linear completion of P
Keywords :
formal logic; logic programming; SLDNF-resolution; allowed program; allowed query; completeness; computational notion; declarative semantics; linear completion; linear logic; linear semantics; logic programs; logical theory; soundness; Bismuth; Logic; Noise measurement;
Conference_Titel :
Logic in Computer Science, 1990. LICS '90, Proceedings., Fifth Annual IEEE Symposium on e
Conference_Location :
Philadelphia, PA
Print_ISBN :
0-8186-2073-0
DOI :
10.1109/LICS.1990.113748