Title :
Value-Iteration Based Fitted Policy Iteration: Learning with a Single Trajectory
Author :
Antos, András ; Szepesvári, Csaba ; Munos, Rémi
Author_Institution :
Comput. & Autom. Res. Inst., Hungarian Acad. of Sci., Budapest
Abstract :
We consider batch reinforcement learning problems in continuous space, expected total discounted-reward Markovian decision problems when the training data is composed of the trajectory of some fixed behaviour policy. The algorithm studied is policy iteration where in successive iterations the action-value functions of the intermediate policies are obtained by means of approximate value iteration. PAC-style polynomial bounds are derived on the number of samples needed to guarantee near-optimal performance. The bounds depend on the mixing rate of the trajectory, the smoothness properties of the underlying Markovian decision problem, the approximation power and capacity of the function set used. One of the main novelties of the paper is that new smoothness constraints are introduced thereby significantly extending the scope of previous results.
Keywords :
Markov processes; continuous systems; iterative methods; learning (artificial intelligence); action-value function; approximate value iteration; batch reinforcement learning; continuous space; discounted-reward Markovian decision problem; policy iteration; single trajectory; Algorithm design and analysis; Automation; Control systems; Dynamic programming; Extraterrestrial measurements; Interleaved codes; Learning; Polynomials; State-space methods; Training data;
Conference_Titel :
Approximate Dynamic Programming and Reinforcement Learning, 2007. ADPRL 2007. IEEE International Symposium on
Conference_Location :
Honolulu, HI
Print_ISBN :
1-4244-0706-0
DOI :
10.1109/ADPRL.2007.368207