DocumentCode :
271962
Title :
Greedy Reduction Algorithms for Mixtures of Exponential Family
Author :
Ardeshiri, Tohid ; Granstrom, Karl ; Özkan, Emre ; Orguner, Umut
Author_Institution :
Dept. of Electr. Eng., Linkoping Univ., Linköping, Sweden
Volume :
22
Issue :
6
fYear :
2015
fDate :
Jun-15
Firstpage :
676
Lastpage :
680
Abstract :
In this letter, we propose a general framework for greedy reduction of mixture densities of exponential family. The performances of the generalized algorithms are illustrated both on an artificial example where randomly generated mixture densities are reduced and on a target tracking scenario where the reduction is carried out in the recursion of a Gaussian inverse Wishart probability hypothesis density (PHD) filter.
Keywords :
filtering theory; greedy algorithms; target tracking; Gaussian inverse Wishart probability hypothesis density filter; PHD; exponential family mixture density; generalized algorithms; greedy reduction algorithms; randomly generated mixture density; target tracking; Approximation methods; Equations; Materials requirements planning; Merging; Signal processing algorithms; Target tracking; Exponential family; Kullback–Leibler divergence; extended target; integral square error; mixture density; mixture reduction; target tracking;
fLanguage :
English
Journal_Title :
Signal Processing Letters, IEEE
Publisher :
ieee
ISSN :
1070-9908
Type :
jour
DOI :
10.1109/LSP.2014.2367154
Filename :
6945813
Link To Document :
بازگشت