Title :
Iseult/INUMAC Whole Body 11.7 T MRI Magnet
Author :
Vedrine, P. ; Gilgrass, G. ; Aubert, G. ; Belorgey, J. ; Berriaud, C. ; Bourquard, A. ; Bredy, P. ; Donati, A. ; Dubois, O. ; Juster, F.P. ; Lannou, H. ; MolinieÌ, F. ; Nusbaum, M. ; Nunio, F. ; Payn, A. ; Quettier, L. ; Schild, T. ; Scola, L. ; Sinanna,
Author_Institution :
Inst. de Rech. sur les lois Fondamentales de l´Univers (IRFU), CEA/Saclay, Gif-sur-Yvette, France
Abstract :
A new innovative Whole Body 11.7 T MRI magnet is currently being manufactured at Alstom Belfort as part of the Iseult/Inumac project, a French-German initiative focused on very high magnetic-field molecular imaging. It will be installed in 2015 in a neuroscience research center with other very high field MRI equipment, operating in France at CEA Saclay since November 2006. This actively shielded magnet system, manufactured from NbTi superconductor, will generate a homogeneous field level of 11.75 T within a 90 cm warm bore, and will operate at a current of 1483 A, in driven mode, in a bath of superfluid LHe at 1.8K. The stored energy is 338 MJ and the inductance 308 H. The cryostat has external dimensions of 5 m in diameter and 5.2 m in length, for a total weight of the magnet of 132 tons. Before the start of the magnet manufacturing, developments made on prototypes have confirmed a specific set of design and manufacturing options including the conductor choice and the proposed cryogenic and electrical schemes. The main coil is wound as double pancakes laterally wetted by HeII. The magnet is serviced by a separate cryogenic and electrical facility forming an integral part of the installation. The developments and the magnet manufacturing have been supervised by an independent Magnet Advisory Committee. Full-scale serial production of the 170 double pancakes which form the main coil package has been finished by Alstom. The main coil is being assembled and the cryostating of the magnet should be finished by the middle of 2015. Full tests and commissioning of the magnet at 1.8K at Neurospin are expected in 2015.
Keywords :
magnetic fields; magnetic resonance imaging; magnets; niobium compounds; Alstom; CEA Saclay; French-German initiative; HeII; Iseult-Inumac project; NbTi; conductor choice; cryogenic schemes; current 1483 A; double pancakes; electrical schemes; energy 338 MJ; full-scale serial production; independent magnet advisory committee; innovative whole body 11.7 T MRI magnet; magnet developments; magnet manufacturing; magnetic resonance imaging magnet; magnetic-field molecular imaging; neuroscience research center; size 5 m; size 5.2 m; temperature 1.8 K; Coils; Magnetic noise; Magnetic resonance imaging; Magnetic separation; Magnetic shielding; Manufacturing; Superconducting magnets; Magnetic resonance imaging; Magnetic resonance imaging (MRI); Niobium titanium; Superconducting magnet; niobium titanium; superconducting magnet;
Journal_Title :
Applied Superconductivity, IEEE Transactions on
DOI :
10.1109/TASC.2014.2369233