DocumentCode :
2723284
Title :
A Modified k-plane Clustering Algorithm for Identification of Hybrid Systems
Author :
Tabatabaei-Pour, Mojtaba ; Salahshoor, Karim ; Moshiri, Behzad
Author_Institution :
Dept. of Autom. & Instrum., Pet. Univ. of Technol., Tehran
Volume :
1
fYear :
0
fDate :
0-0 0
Firstpage :
1333
Lastpage :
1337
Abstract :
A new algorithm for the identification of discrete time hybrid systems in the piece-wise affine (PWA) form is introduced. This problem involves the estimation of both the parameters of the affine submodels and the partition of the PWA map from data. At the first stage we propose a modified version of the k-plane clustering algorithm proposed by Bradely and Mangasariang (2000) to provide initial data classification and parameter estimation. Then we apply the refinement algorithm proposed by Bemporad et al. (2003) repeatedly to the estimated clusters in order to improve both the data classification and the parameter estimation
Keywords :
discrete time systems; parameter estimation; pattern classification; pattern clustering; refinement calculus; PWA submodel; cluster estimation; data classification; discrete time hybrid system identification; modified k-plane clustering algorithm; parameter estimation; piecewise affine form; refinement algorithm; Automation; Bayesian methods; Clustering algorithms; Control system synthesis; Instruments; Logic; Nonlinear equations; Parameter estimation; Partitioning algorithms; Petroleum; Nonlinear identification; classification; clustering; hybrid systems;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Intelligent Control and Automation, 2006. WCICA 2006. The Sixth World Congress on
Conference_Location :
Dalian
Print_ISBN :
1-4244-0332-4
Type :
conf
DOI :
10.1109/WCICA.2006.1712564
Filename :
1712564
Link To Document :
بازگشت