Title :
Multi-Innovation Stochastic Gradient Identification Methods
Author :
Ding, Feng ; Chen, Tongwen
Author_Institution :
Control Sci. & Eng. Res. Center, Southern Yangtze Univ., Jiangsu
Abstract :
The stochastic gradient (SG) identification algorithm has a poor convergence rate. We extend the SG algorithm from the viewpoint of innovation modification and present multi-innovation stochastic gradient (MISG) identification algorithms. Since the multi-innovation stochastic gradient algorithms use not only the current data but also the past data at each iteration, parameter estimation accuracy can be improved. Further, we study the performance of the SG and MISG algorithms and show that the MISG algorithms have faster convergence rates and better tracking performance than their corresponding SG algorithms by simulation results
Keywords :
gradient methods; parameter estimation; stochastic processes; multiinnovation stochastic gradient identification; parameter estimation; recursive identification; Convergence; Eigenvalues and eigenfunctions; Gradient methods; Linear regression; Parameter estimation; Stochastic processes; Stochastic resonance; Stochastic systems; Technological innovation; Vectors; Recursive identification; convergence properties; parameter estimation; stochastic gradient methods; stochastic processes;
Conference_Titel :
Intelligent Control and Automation, 2006. WCICA 2006. The Sixth World Congress on
Conference_Location :
Dalian
Print_ISBN :
1-4244-0332-4
DOI :
10.1109/WCICA.2006.1712600