Title :
A Genetic Algorithms Approach to Non-coding RNA Gene Searches
Author_Institution :
Dept. of Electr. & Comput. Eng., Boise State Univ.
Abstract :
A genetic algorithm is proposed as an alternative to the traditional linear programming method for scoring covariance models in non-coding RNA (ncRNA) gene searches. The standard method is guaranteed to find the best score, but it is too slow for general use. The observation that most of the search space investigated by the linear programming method does not even remotely resemble any observed sequence in real sequence data can be used to motivate the use of genetic algorithms (GAs) to quickly reject regions of the search space. A search space with many local minima makes gradient decent an unattractive alternative. It is shown that a fixed-length representation for alignment of two sequences taken from the protein threading literature can be adapted for use with covariance models
Keywords :
biology computing; covariance analysis; genetic algorithms; genetics; linear programming; macromolecules; search problems; covariance models; genetic algorithms; linear programming; noncoding RNA gene searches; search space; Binary trees; DNA; Databases; Genetic algorithms; Hidden Markov models; Linear programming; Proteins; RNA; Sequences; Upper bound;
Conference_Titel :
Adaptive and Learning Systems, 2006 IEEE Mountain Workshop on
Conference_Location :
Logan, UT
Print_ISBN :
1-4244-0166-6
DOI :
10.1109/SMCALS.2006.250691