DocumentCode :
2725483
Title :
Tensor codes for the rank metric
Author :
Roth, Ron M.
Author_Institution :
Dept. of Electr. Eng., Technion-Israel Inst. of Technol., Haifa, Israel
fYear :
1995
fDate :
17-22 Sep 1995
Firstpage :
239
Abstract :
Linear spaces of n×n×n tensors over finite fields are investigated where the rank of any nonzero tensor in the space is at least a prescribed number μ. Such spaces can recover any n×n×n tensor of rank⩽(μ-1)/2, and, as such, they can be used to correct three-way crisscross errors. Bounds on the dimensions of such spaces are given for μ⩽2n+1, and constructions are provided for μ⩽2n-1 with redundancy which is linear in n. These constructions can be generalized to spaces of n×n×···×n hyper-arrays
Keywords :
arrays; error correction codes; linear algebra; tensors; finite fields; hyperarrays; linear redundancy; linear spaces; nonzero tensor; rank metric; tensor codes; three-way crisscross errors correction; Computer science; Error correction; Galois fields; Hamming distance; Polynomials; Redundancy; Tensile stress; Upper bound; Vectors;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Information Theory, 1995. Proceedings., 1995 IEEE International Symposium on
Conference_Location :
Whistler, BC
Print_ISBN :
0-7803-2453-6
Type :
conf
DOI :
10.1109/ISIT.1995.535754
Filename :
535754
Link To Document :
بازگشت