Title :
Bayesian Mixture of AR Models for Time Series Clustering
Author :
Venkataramana Kini, B. ; Sekhar, C. Chandra
Author_Institution :
Honeywell Technol. Solutions Lab., Bangalore
Abstract :
In this paper we propose a Bayesian framework for estimation of parameters of a mixture of autoregressive model, for time series clustering. The proposed approach is based on variational principles and provides a tractable approximation to the true posterior density that minimizes Kullback-Liebler(KL) divergence w.r.t prior distribution. The proposed approach is applied both on simulated and real time series data sets and found to be useful in exploring and finding the true number of underlying clusters, starting from arbitrarily large number clusters.
Keywords :
Bayes methods; autoregressive processes; parameter estimation; pattern clustering; time series; AR model; Bayesian mixture; Kullback-Liebler divergence; autoregressive model; parameter estimation; posterior density; prior distribution; time series clustering; Bayesian methods; Computer science; Data mining; Hidden Markov models; Maximum likelihood estimation; Parameter estimation; Pattern recognition; Probability density function; Random variables; Sampling methods;
Conference_Titel :
Advances in Pattern Recognition, 2009. ICAPR '09. Seventh International Conference on
Conference_Location :
Kolkata
Print_ISBN :
978-1-4244-3335-3
DOI :
10.1109/ICAPR.2009.101