DocumentCode :
2726894
Title :
Online Improved Eigen Tracking
Author :
Tripathi, Subarna ; Chaudhury, Santanu ; Roy, Sumantra Dutta
Author_Institution :
Electr. Eng. Dept., IIT Delhi, Delhi
fYear :
2009
fDate :
4-6 Feb. 2009
Firstpage :
278
Lastpage :
281
Abstract :
We present a novel predictive statistical framework to improve the performance of an eigen tracker which uses fast and efficient eigen space updates to learn new views of the object being tracked on the fly using candid co-variance free incremental PCA. The proposed system detects and tracks an object in the scene by learning the appearance model of the object online motivated by non-traditional uniform norm. It speeds up the tracker many fold by avoiding nonlinear optimization generally used in the literature.
Keywords :
eigenvalues and eigenfunctions; object detection; principal component analysis; target tracking; covariance free incremental PCA; eigen space; eigen tracker; Iterative algorithms; Layout; Motion measurement; Object detection; Particle filters; Pattern recognition; Predictive models; Principal component analysis; Sampling methods; Tracking; appearance learn; eigentracking; particle filter;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Advances in Pattern Recognition, 2009. ICAPR '09. Seventh International Conference on
Conference_Location :
Kolkata
Print_ISBN :
978-1-4244-3335-3
Type :
conf
DOI :
10.1109/ICAPR.2009.39
Filename :
4782791
Link To Document :
بازگشت