DocumentCode :
2734912
Title :
On clusterings-good, bad and spectral
Author :
Kannan, Ravi ; Vempala, Santosh ; Veta, A.
Author_Institution :
Dept. of Comput. Sci., Yale Univ., New Haven, CT, USA
fYear :
2000
fDate :
2000
Firstpage :
367
Lastpage :
377
Abstract :
We propose a new measure for assessing the quality of a clustering. A simple heuristic is shown to give worst-case guarantees under the new measure. Then we present two results regarding the quality of the clustering found by a popular spectral algorithm. One proffers worst case guarantees whilst the other shows that if there exists a “good” clustering then the spectral algorithm will find one close to it
Keywords :
computational complexity; heuristic programming; pattern clustering; randomised algorithms; clustering quality assessment measure; heuristic; polynomial time algorithms; randomized algorithm; spectral algorithm; spectral clustering; worst-case guarantees; Algorithm design and analysis; Clustering algorithms; Computer science; Engineering profession; Mathematics; Partitioning algorithms; Performance analysis; Spectral analysis;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Foundations of Computer Science, 2000. Proceedings. 41st Annual Symposium on
Conference_Location :
Redondo Beach, CA
ISSN :
0272-5428
Print_ISBN :
0-7695-0850-2
Type :
conf
DOI :
10.1109/SFCS.2000.892125
Filename :
892125
Link To Document :
بازگشت