DocumentCode :
2735194
Title :
Particle filter for state and parameter estimation in passive ranging
Author :
Wang Wan-ping ; Liao Sheng ; Xing Ting-wen
Author_Institution :
Inst. of Opt. & Electron., Chinese Acad. of Sci., Chengdu, China
Volume :
3
fYear :
2009
fDate :
20-22 Nov. 2009
Firstpage :
257
Lastpage :
261
Abstract :
On-line state and parameter estimation is important and difficult in passive ranging. This paper proposes particle filter based on sequential Monte Carlo method for state estimation. And a kernel smoothing approach is introduced for the estimation of static model parameters. To demonstrate effectiveness of the proposed algorithms, the static parameters are calculated by kernel smoothing and states are estimated by Auxiliary Particle Filter (APF) in simulation experiment. The proposed algorithm achieves combined state and parameter satisfactory results.
Keywords :
Monte Carlo methods; parameter estimation; particle filtering (numerical methods); passive radar; state estimation; auxiliary particle filter; kernel smoothing approach; parameter estimation; passive ranging; sequential Monte Carlo method; state estimation; static model parameters; Bayesian methods; Kernel; Optical filters; Optical sensors; Parameter estimation; Particle filters; Radar tracking; Smoothing methods; State estimation; Target tracking; Parameter Estimation; Particle Filter; State Estimation; bearing-only tracking; passive ranging;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Intelligent Computing and Intelligent Systems, 2009. ICIS 2009. IEEE International Conference on
Conference_Location :
Shanghai
Print_ISBN :
978-1-4244-4754-1
Electronic_ISBN :
978-1-4244-4738-1
Type :
conf
DOI :
10.1109/ICICISYS.2009.5358175
Filename :
5358175
Link To Document :
بازگشت