DocumentCode :
2735765
Title :
A Bayesian approach to expression network component analysis
Author :
Sabatti, Chiara ; Rohlin, Lars
Author_Institution :
Dept. of Stat. & Human Genetics, California Univ., Los Angeles, CA, USA
Volume :
2
fYear :
2004
fDate :
1-5 Sept. 2004
Firstpage :
2933
Lastpage :
2936
Abstract :
A semiblind deconvolution method of analysis for gene expression data was proposed recently in a series of articles appeared in PNAS. We illustrate here how similar goals can be achieved in a Bayesian framework and how necessary information on the presence of binding sites can be obtained with Vocabulon, an algorithm based on a stochastic dictionary model.
Keywords :
belief networks; biology computing; genetics; molecular biophysics; stochastic processes; Bayesian approach; Vocabulon; binding sites; gene expression data; network component analysis; semiblind deconvolution method; stochastic dictionary model; Bayesian methods; Chemical analysis; Chemical engineering; Deconvolution; Gene expression; Genetics; Humans; Matrix decomposition; Proteins; Statistical analysis;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Engineering in Medicine and Biology Society, 2004. IEMBS '04. 26th Annual International Conference of the IEEE
Conference_Location :
San Francisco, CA
Print_ISBN :
0-7803-8439-3
Type :
conf
DOI :
10.1109/IEMBS.2004.1403833
Filename :
1403833
Link To Document :
بازگشت