DocumentCode :
2742749
Title :
Subspace estimation using factor analysis
Author :
Sardarabadi, Ahmad Mouri ; Van der Veen, Alle-Jan
Author_Institution :
Fac. of Electr. Eng., Math. & Comput. Sci., Delft Univ. of Technol. (TU Delft), Delft, Netherlandds
fYear :
2012
fDate :
17-20 June 2012
Firstpage :
477
Lastpage :
480
Abstract :
Many subspace estimation techniques assume either that the system has a calibrated array or that the noise covariance matrix is known. If the noise covariance matrix is unknown, training or other calibration techniques are used to find it. In this paper another approach to the problem of unknown noise covariance is presented. The complex factor analysis (FA) and a new extended version of this model are used to model the covariance matrix. The steep algorithm for finding the MLE of the model parameters is presented. The Fisher information and an expression for the Cramér-Rao bound are derived. The practical use of the model is illustrated using simulated and experimental data.
Keywords :
array signal processing; calibration; covariance matrices; maximum likelihood estimation; Cramér-Rao bound; FA; Fisher information; MLE; calibration techniques; complex factor analysis; noise covariance matrix; steep algorithm; subspace estimation techniques; Arrays; Covariance matrix; Data models; Maximum likelihood estimation; Noise; Cramér-Rao bound; Factor analysis; complex factor analysis; maximum-likelihood; subspace estimation;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Sensor Array and Multichannel Signal Processing Workshop (SAM), 2012 IEEE 7th
Conference_Location :
Hoboken, NJ
ISSN :
1551-2282
Print_ISBN :
978-1-4673-1070-3
Type :
conf
DOI :
10.1109/SAM.2012.6250543
Filename :
6250543
Link To Document :
بازگشت