Title :
Privacy Preserving of Associative Classification and Heuristic Approach
Author :
Harnsamut, Nattapon ; Natwichai, Juggapong ; Seisungsittisunti, Bowonsak
Author_Institution :
Comput. Eng. Dept., Chiang Mai Univ., Chiang Mai
Abstract :
In the era of data explosion, privacy preserving has become a necessary task for any data mining task. Therefore, data transformation to ensure privacy preservation is needed. Meanwhile, the transformed data must have quality to be used in the intended data mining task, i.e. the impact on the data quality with regard to the data mining task must be minimized. However, the data transformation problem to preserve the data privacy while minimizing the impact has been proven as an NP-hard. Also, for classification mining, each classification approach may use different approach to deliver knowledge. Therefore, data quality metric for the classification task should be tailored to a specific type of classification. In this paper, we focus on maintaining the data quality in the scenarios which the transformed data will be used to build associative classification models. We propose a data quality metric for such the associative classification. Also, we propose a heuristic approach to preserve the privacy and maintain the data quality. Subsequently, we validate our proposed approaches with experiments.
Keywords :
computational complexity; data mining; data privacy; NP-hard; associative classification; data explosion; data mining task; data privacy; data quality; data quality metric; data transformation; privacy preservation; Artificial intelligence; Cancer; Computer networks; Data engineering; Data mining; Data privacy; Diseases; Distributed computing; Influenza; Software engineering;
Conference_Titel :
Software Engineering, Artificial Intelligence, Networking, and Parallel/Distributed Computing, 2008. SNPD '08. Ninth ACIS International Conference on
Conference_Location :
Phuket
Print_ISBN :
978-0-7695-3263-9
DOI :
10.1109/SNPD.2008.155