DocumentCode :
2744926
Title :
Robust adaptive control of uncertain nonlinear systems using neural networks
Author :
McFarland, Michael B. ; Calise, Anthony J.
Author_Institution :
Sch. of Aerosp. Eng., Georgia Inst. of Technol., Atlanta, GA, USA
Volume :
3
fYear :
1997
fDate :
4-6 Jun 1997
Firstpage :
1996
Abstract :
This paper describes a hybrid approach to the problem of controlling a class of nonlinear systems in the face of both unknown nonlinearities and unmodeled dynamics. In the proposed methodology, neural networks and direct adaptive control compensate for unknown nonlinear mappings while dynamic nonlinear damping provides robustness to unmodeled dynamics. To illustrate the theoretical development, the authors design a longitudinal autopilot for a simplified nonlinear missile aerodynamic model with input unmodeled dynamics. Simulation results demonstrate robustness in the face of this type of uncertainty
Keywords :
adaptive control; aerodynamics; control system synthesis; damping; dynamics; missile guidance; neurocontrollers; nonlinear systems; robust control; uncertain systems; adaptive control; aerodynamic model; autopilot; damping; missile; neural networks; nonlinear systems; nonlinearities; robust control; robustness; uncertain systems; unmodeled dynamics; Adaptive control; Aerodynamics; Control nonlinearities; Control systems; Damping; Missiles; Neural networks; Nonlinear control systems; Nonlinear systems; Robust control;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
American Control Conference, 1997. Proceedings of the 1997
Conference_Location :
Albuquerque, NM
ISSN :
0743-1619
Print_ISBN :
0-7803-3832-4
Type :
conf
DOI :
10.1109/ACC.1997.611038
Filename :
611038
Link To Document :
بازگشت