Title :
A Bayesian approach to biomechanical modeling to optimize over large parameter spaces while considering anatomical variability
Author :
Santos, V.J. ; Valero-Cuevas, F.J.
Author_Institution :
Neuromuscular Biomechanics Laboratory, Cornell Univ., NY, USA
Abstract :
We present the Markov chain Monte Carlo (MCMC) approach in the context of a musculoskeletal model of the thumb. With special consideration for the complexities of biomechanical modeling, we present this approach as an alternative to standard parameter estimation techniques that produce a single, in some way optimal, set of parameter values. In contrast, MCMC methods are derived from a Bayesian philosophy, in which each "true" model parameter is actually a random variable with its own probability distribution. With MCMC we can (1) address challenges of model parameter estimation that are difficult for gradient-based methods to meet, (2) estimate the inherent biomechanical capabilities of a specific "model topology" for large, variable parameter spaces (e.g. 50-dimensional for the assumed thumb model), and (3) determine the functional consequences of the unavoidable anatomical variability across subjects in a population. Using the MCMC approach with a Metropolis-Hastings sampling algorithm we explored a 50-D musculoskeletal parameter space and successfully achieved convergence. We found the relatively small subspace of the expansive 50-D space that, for a hinged serial linkage model of the thumb, predicts functional outcomes that best-fit the experimental data.
Keywords :
Bayes methods; Markov processes; Monte Carlo methods; biomechanics; muscle; parameter estimation; physiological models; statistical distributions; Bayesian approach; Markov chain Monte Carlo approach; Metropolis-Hastings sampling algorithm; anatomical variability; biomechanical modeling; gradient-based methods; model parameter estimation; musculoskeletal thumb model; probability distribution; Bayesian methods; Context modeling; Monte Carlo methods; Musculoskeletal system; Parameter estimation; Probability distribution; Random variables; Sampling methods; Thumb; Topology; Markov Chain Monte Carlo; Metropolis-Hastings sampling; biomechanical modeling; hand; parameter estimation; stochastic simulation; thumb;
Conference_Titel :
Engineering in Medicine and Biology Society, 2004. IEMBS '04. 26th Annual International Conference of the IEEE
Conference_Location :
San Francisco, CA
Print_ISBN :
0-7803-8439-3
DOI :
10.1109/IEMBS.2004.1404282