DocumentCode :
2746952
Title :
Parallel matrix multiplication on a linear array with a reconfigurable pipelined bus system
Author :
Li, Keqin ; Pan, Victor Y.
Author_Institution :
Dept. of Math. & Comput. Sci., State Univ. of New York, New Paltz, NY, USA
fYear :
1999
fDate :
12-16 Apr 1999
Firstpage :
31
Lastpage :
35
Abstract :
The known fast sequential algorithms for multiplying two N×N matrices (over an arbitrary ring) have time complexity O(Nα ), where 2<α<3. The current best value of α is less than 2.3755. We show that for all 1⩽p⩽Nα, multiplying two N×N matrices can be performed on a p-processor linear array with a reconfigurable pipelined bus system (LARPBS) in O(N α/p+(N2/p2α/)log p) time. This is currently the fastest parallelization of the best known sequential matrix multiplication algorithm on a distributed memory parallel system
Keywords :
computational complexity; digital arithmetic; distributed memory systems; matrix algebra; matrix multiplication; parallel algorithms; N×N matrices; distributed memory parallel system; linear array; parallel matrix multiplication; reconfigurable pipelined bus system; sequential algorithms; sequential matrix multiplication algorithm; time complexity; Arithmetic; Computer science; Educational institutions; Hypercubes; Ice; International collaboration; Mathematics; NASA; Phase change random access memory; Standards;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Parallel Processing, 1999. 13th International and 10th Symposium on Parallel and Distributed Processing, 1999. 1999 IPPS/SPDP. Proceedings
Conference_Location :
San Juan
Print_ISBN :
0-7695-0143-5
Type :
conf
DOI :
10.1109/IPPS.1999.760431
Filename :
760431
Link To Document :
بازگشت