DocumentCode :
27505
Title :
Robust Unsupervised Arousal Rating:A Rule-Based Framework withKnowledge-Inspired Vocal Features
Author :
Bone, Daniel ; Chi-Chun Lee ; Narayanan, Shrikanth
Author_Institution :
Dept. of Electr. Eng., Univ. of Southern California, Los Angeles, CA, USA
Volume :
5
Issue :
2
fYear :
2014
fDate :
April-June 1 2014
Firstpage :
201
Lastpage :
213
Abstract :
Studies in classifying affect from vocal cues have produced exceptional within-corpus results, especially for arousal (activation or stress); yet cross-corpora affect recognition has only recently garnered attention. An essential requirement of many behavioral studies is affect scoring that generalizes across different social contexts and data conditions. We present a robust, unsupervised (rule-based) method for providing a scale-continuous, bounded arousal rating operating on the vocal signal. The method incorporates just three knowledge-inspired features chosen based on empirical and theoretical evidence. It constructs a speaker´s baseline model for each feature separately, and then computes single-feature arousal scores. Lastly, it advantageously fuses the single-feature arousal scores into a final rating without knowledge of the true affect. The baseline data is preferably labeled as neutral, but some initial evidence is provided to suggest that no labeled data is required in certain cases. The proposed method is compared to a state-of-the-art supervised technique which employs a high-dimensional feature set. The proposed framework achieveshighly-competitive performance with additional benefits. The measure is interpretable, scale-continuous as opposed to discrete, and can operate without any affective labeling. An accompanying Matlab tool is made available with the paper.
Keywords :
emotion recognition; knowledge based systems; speech processing; speech recognition; unsupervised learning; Matlab tool; affect scoring; baseline data; cross-corpora; data conditions; high-dimensional feature set; knowledge-inspired features; knowledge-inspired vocal features; robust unsupervised arousal rating; rule-based framework; rule-based method; scale-continuous bounded arousal rating; single-feature arousal scores; social contexts; speaker baseline model; supervised technique; vocal cues; vocal signal; Accuracy; Acoustics; Context; Databases; Feature extraction; Robustness; Speech; Arousal; activation; continuous affect tracking; cross-corpora classification; knowledge-inspired features; rule-based rating;
fLanguage :
English
Journal_Title :
Affective Computing, IEEE Transactions on
Publisher :
ieee
ISSN :
1949-3045
Type :
jour
DOI :
10.1109/TAFFC.2014.2326393
Filename :
6823638
Link To Document :
بازگشت