DocumentCode :
2752851
Title :
Issues in designing automated minimal resource allocation neural networks
Author :
Markus, Momcilo
Author_Institution :
Illinois State Water Survey, Champaign, IL, USA
Volume :
5
fYear :
2005
fDate :
31 July-4 Aug. 2005
Firstpage :
2671
Abstract :
Artificial neural networks (ANNs) have a long record of generally promising results in hydrology. The earlier applications were mainly based on the back propagation feedforward method, which often used a lengthy trial-and-error method to determine the final network parameters. An attempt to overcome this shortcoming of the traditional applications is the minimal resource allocation network (MRAN). MRAN is online adaptive method which automatically configures the number of hidden nodes based on the input-output patterns presented to the network. Although MRAN demonstrated superior accuracy and more compact network, when compared with the traditional back propagation method, some additional questions need to be addressed. While the number of hidden nodes is estimated automatically, other user-defined parameters are selected arbitrarily, and adjusted through simulations. This research addresses determining the user-defined parameters prior to the model run. The research also compares MRAN results from two applications, and discusses a pathway towards designing a fully automated MRAN.
Keywords :
learning (artificial intelligence); neural nets; resource allocation; artificial neural network; automated minimal resource allocation network; automatic node configuration; automatic node estimation; input-output pattern; network parameter; online adaptive method; trial-and-error method; Artificial neural networks; Electronic mail; Hydrology; Intelligent networks; Neural networks; Neurons; Predictive models; Resource management; Rivers; Water resources;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Neural Networks, 2005. IJCNN '05. Proceedings. 2005 IEEE International Joint Conference on
Print_ISBN :
0-7803-9048-2
Type :
conf
DOI :
10.1109/IJCNN.2005.1556345
Filename :
1556345
Link To Document :
بازگشت