Title :
On the Relation Between Sparse Sampling and Parametric Estimation
Author :
Austin, Christian D. ; Ertin, Emre ; Ash, Joshua N. ; Moses, Randolph L.
Author_Institution :
Dept. of Electr. & Comput. Eng., Ohio State Univ., Columbus, OH
Abstract :
We consider the relationship between parameter estimation of an additive model and sparse inversion of an under-determined matrix (dictionary) in a linear system. The dictionary is constructed by sampling parameters of the additive model. Parameters and model order are estimated using regularized least-squares inversion. We investigate equi-spaced and Fisher information inspired parameter sampling methods for dictionary construction, and present an example quantifying parameter estimation error performance for the different sampling methods. These results indicate that estimation performance is degraded by sampling the parameter space either too finely or too coarsely.
Keywords :
least squares approximations; matrix inversion; parameter estimation; signal reconstruction; signal sampling; sparse matrices; Fisher information inspired parameter sampling method; additive parametric model; dictionary construction; equi-space inspired parameter sampling method; linear system; model order estimation; parameter estimation error performance; regularized least-squares inversion; sparse matrix inversion; sparse sampling; sparse signal reconstruction; Additives; Combinatorial mathematics; Context modeling; Costs; Dictionaries; Linear systems; Parameter estimation; Parametric statistics; Sampling methods; Sparse matrices; Model order estimation; Parameter estimation; Sparse reconstruction;
Conference_Titel :
Digital Signal Processing Workshop and 5th IEEE Signal Processing Education Workshop, 2009. DSP/SPE 2009. IEEE 13th
Conference_Location :
Marco Island, FL
Print_ISBN :
978-1-4244-3677-4
Electronic_ISBN :
978-1-4244-3677-4
DOI :
10.1109/DSP.2009.4785954