• DocumentCode
    276148
  • Title

    Internal measuring models in trained neural networks for parameter estimation from images

  • Author

    Feng, Tian-Jin ; Houkes, Z. ; Korsten, M.J. ; Spreeuwers, L.J.

  • Author_Institution
    Ocean Univ. of Qingdao, China
  • fYear
    1992
  • fDate
    7-9 Apr 1992
  • Firstpage
    230
  • Lastpage
    233
  • Abstract
    The internal representations of ´learned´ knowledge in neural networks are still poorly understood, even for backpropagation networks. The paper discusses a possible interpretation of learned knowledge of a network trained for parameter estimation from images. The outputs of the hidden layer are the internal components of the output parameters. The input-to-hidden weight maps, functioning as a kind of internal measuring model of the parameter components, include statistical features of the training set and seem to have a clear physical and geometrical meaning
  • Keywords
    neural nets; parameter estimation; picture processing; backpropagation networks; hidden layer; images; input-to-hidden weight maps; internal measuring models; learned knowledge; neural networks; parameter estimation;
  • fLanguage
    English
  • Publisher
    iet
  • Conference_Titel
    Image Processing and its Applications, 1992., International Conference on
  • Conference_Location
    Maastricht
  • Print_ISBN
    0-85296-543-5
  • Type

    conf

  • Filename
    146780