DocumentCode :
2763007
Title :
Epileptic Seizure Detection using AR Model on EEG Signals
Author :
Mousavi, S.R. ; Niknazar, M. ; Vahdat, B. Vosoughi
Author_Institution :
Biomed. Eng. Lab., Sharif Univ. of Technol., Tehran
fYear :
2008
fDate :
18-20 Dec. 2008
Firstpage :
1
Lastpage :
4
Abstract :
This study presents a new method for epilepsy detection based on autoregressive (AR) estimation of EEG signals. In this method, optimum order for AR model is determined by Bayesian Information Criterion (BIC) and then AR parameters of EEG signals (from EEG data set of epilepsy center of the University of Bonn, Germany) and their sub-bands (created with the help of wavelet decomposition) are extracted based on it. These parameters are used as a feature to classify the EEG signals into Healthy, Interictal (seizure free) and Ictal (during a seizure) groups using multilayer perceptron (MLP) classifier. Correct classification scores at the range of 91% to 96% reveals the potential of our approach for epilepsy detection.
Keywords :
autoregressive processes; electroencephalography; medical disorders; medical signal processing; multilayer perceptrons; neurophysiology; signal classification; wavelet transforms; AR model; Bayesian Information Criterion; EEG signal classification; MLP classifier; University of Bonn; autoregressive estimation; correct classification scores; epileptic seizure detection; healthy group; ictal group; interictal group; multilayer perceptron classifier; neurological disorder; wavelet decomposition; Brain modeling; Electroencephalography; Epilepsy; Gamma ray detection; Gamma ray detectors; Laboratories; Robustness; Signal analysis; Signal processing; Wavelet analysis; AR model; BIC criterion; EEG signals; Epilepsy; wavelet decomposition;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Biomedical Engineering Conference, 2008. CIBEC 2008. Cairo International
Conference_Location :
Cairo
Print_ISBN :
978-1-4244-2694-2
Electronic_ISBN :
978-1-4244-2695-9
Type :
conf
DOI :
10.1109/CIBEC.2008.4786067
Filename :
4786067
Link To Document :
بازگشت