Title :
Capacity bounds for energy efficient data streaming in homogeneous wireless ad hoc networks
Author :
Shpungin, Hanan ; Gopinathan, Ajay ; Li, Zongpeng
Author_Institution :
Dept. of Comput. Sci., Univ. of Calgary, Calgary, AB, Canada
Abstract :
According to the Gaussian channel model, the throughput of a wireless link (u, v) is B log(l + S/N) bps, where B is the channel bandwidth and S/N is the signal to noise ratio. Wireless links which are scheduled simultaneously add to the noise levels of each other and cause the overall network capacity to decrease. In this paper we consider a wireless ad hoc network with unicast or multicast routing and simultaneously transmitting nodes along the route. Our major goal is to increase the capacity of the unicast/multicast sessions when all the wireless links are scheduled simultaneously. In addition, we try to minimize the number of active nodes involved in the unicast/multicast session for the purpose of energy efficiency. We assume that all the nodes share the same transmission range if activated and propose several node activation schemes with provable asymptotic bounds on the capacity and energy efficiency of the induced communication graph. We verify our results by simulations.
Keywords :
Gaussian channels; ad hoc networks; telecommunication network routing; Gaussian channel model; communication graph; data streaming; energy efficient; homogeneous wireless ad hoc networks; multicast routing; signal to noise ratio; wireless link; Channel models; Interference; Signal to noise ratio; Throughput; Unicast; Wireless networks;
Conference_Titel :
Sensor, Mesh and Ad Hoc Communications and Networks (SECON), 2011 8th Annual IEEE Communications Society Conference on
Conference_Location :
Salt Lake City, UT
Print_ISBN :
978-1-4577-0094-1
DOI :
10.1109/SAHCN.2011.5984907