DocumentCode :
2770048
Title :
Generating Abstract Networks Using Multi-relational Biological Data
Author :
Caravelli, Paul ; Beard, Mitch ; Gopolan, Brian ; Singh, Lisa ; Hu, Zhang-Zhi
Author_Institution :
Dept. of Comput. Sci., Georgetown Univ., Washington, DC, USA
fYear :
2009
fDate :
15-17 July 2009
Firstpage :
331
Lastpage :
336
Abstract :
This paper presents an approach for visual exploration of groups in network data. We let users visually cluster nodes based on common semantic and relational features. We describe the clusters in the context of multi-relational protein data. Finally, we illustrate the clusters as composite nodes using a visual analytic tool and show how to create a meaningful abstracted protein network by connecting these composite nodes based on common membership or common attribute features.
Keywords :
biology computing; data visualisation; pattern clustering; proteins; abstract networks; abstracted protein network; cluster nodes; common attribute features; common membership; composite nodes; multirelational biological data; multirelational protein data; visual analytic tool; visual exploration; Biological system modeling; Biology computing; Computer networks; DC generators; Data mining; Data visualization; Joining processes; Oncology; Proteins; Visual analytics; abstract networks; protein network; visual analytics;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Information Visualisation, 2009 13th International Conference
Conference_Location :
Barcelona
ISSN :
1550-6037
Print_ISBN :
978-0-7695-3733-7
Type :
conf
DOI :
10.1109/IV.2009.73
Filename :
5190851
Link To Document :
بازگشت