DocumentCode :
2770660
Title :
Testing the Augmented Binary Multiclass SVM on Microarray Data
Author :
Anguita, Davide ; Ridella, Sandro ; Sterpi, Dario
Author_Institution :
Univ. of Genoa, Genoa
fYear :
0
fDate :
0-0 0
Firstpage :
1966
Lastpage :
1968
Abstract :
In this paper we test a new multicategory SVM method, called augmented binary (AB), on microarray gene expression data. The AB SVM is one of the methods generating a multicategory classifier in one step, without dividing the multiclass problem into binary subproblems. This approach can be useful when the number of samples is very low, like in this kind of application. Furthermore, the use of a single SVM, instead of several binary ones, simplifies the search for optimal hyperparameters and allows a consistent output for all the classes.
Keywords :
genetics; medical computing; pattern classification; support vector machines; augmented binary multiclass SVM; binary subproblems; microarray gene expression data; multicategory classifier; Biomedical equipment; Clinical diagnosis; Diseases; Gene expression; Machine learning; Medical services; Medical treatment; Support vector machine classification; Support vector machines; Testing;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Neural Networks, 2006. IJCNN '06. International Joint Conference on
Conference_Location :
Vancouver, BC
Print_ISBN :
0-7803-9490-9
Type :
conf
DOI :
10.1109/IJCNN.2006.246941
Filename :
1716351
Link To Document :
بازگشت