DocumentCode :
2772092
Title :
Hough Transform Neural Network for Seismic Pattern Detection
Author :
Huang, Kou-Yuan ; You, Jiun-De ; Chen, Kai-Ju ; Lai, Hung-Lin ; Dong, An-Jin
Author_Institution :
Nat. Chiao Tung Univ., Hsinchu
fYear :
0
fDate :
0-0 0
Firstpage :
2453
Lastpage :
2458
Abstract :
Hough transform neural network is adopted to detect line pattern of direct wave and hyperbola pattern of reflection wave in a seismogram. The distance calculation from point to hyperbola is calculated from the time difference. This calculation makes the parameter learning feasible. The neural network can calculate the total error for distance from point to patterns. The parameter learning rule is derived by gradient descent method to minimize the total error. Experimental results show that line and hyperbola can be detected in both simulated and real seismic data. The network can get a fast convergence. The detection results can automatically provide a reference and improve seismic interpretation.
Keywords :
Hough transforms; geophysics; neural nets; pattern recognition; seismometers; Hough transform; direct wave pattern; distance calculation; hyperbola pattern; neural network; parameter learning; reflection wave; seismic pattern detection; seismogram; Computer science; Convergence; Councils; Erbium; Neural networks; Pattern recognition; Petroleum; Reflection; Shape; Space exploration;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Neural Networks, 2006. IJCNN '06. International Joint Conference on
Conference_Location :
Vancouver, BC
Print_ISBN :
0-7803-9490-9
Type :
conf
DOI :
10.1109/IJCNN.2006.247093
Filename :
1716423
Link To Document :
بازگشت