DocumentCode :
2773037
Title :
An FPGA Implementation of a Competitive Hopfield Neural Network for Use in Histogram Equalization
Author :
Saif, S.M. ; Abbas, Hazem M. ; Nassar, S.M.
Author_Institution :
Mentor Graphics Corp., Cairo
fYear :
0
fDate :
0-0 0
Firstpage :
2815
Lastpage :
2822
Abstract :
This paper presents a field programmable gate array (FPGA) implementation for a competitive Hopfield neural network (CHNN) to be used in image histogram equalization (HE). This algorithm is so computationally expensive that a viable hardware implementation is appealing provided that an efficient algorithm-to-architecture mapping can be achieved. The Xilinx Virtex-E was used for the hardware realization. An efficient use of the chip is outlined in the results.
Keywords :
Hopfield neural nets; field programmable gate arrays; image colour analysis; image enhancement; image sequences; video signal processing; Xilinx Virtex-E; algorithm-to-architecture mapping; competitive Hopfield neural network; field programmable gate array; gray-level scale; hardware implementation; image enhancement; image histogram equalization; video sequence; Discrete cosine transforms; Field programmable gate arrays; Hardware; Helium; Histograms; Hopfield neural networks; Image processing; Intelligent networks; Pixel; Signal processing algorithms;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Neural Networks, 2006. IJCNN '06. International Joint Conference on
Conference_Location :
Vancouver, BC
Print_ISBN :
0-7803-9490-9
Type :
conf
DOI :
10.1109/IJCNN.2006.247189
Filename :
1716479
Link To Document :
بازگشت