Title :
Minimal cross-correlation criterion for speech emotion multi-level feature selection
Author :
Liogiene, Tatjana ; Tamulevicius, Gintautas
Author_Institution :
Vilnius Univ. Inst. of Math. & Inf., Vilnius, Lithuania
Abstract :
The problem of speech emotion recognition commonly is dealt with by delivering a huge feature set containing up to a few thousands different features. This can raise the “curse of dimensionality” problem and downgrade speech emotion classification process. In this paper we present minimal cross-correlation based formation of multi-level features for speech emotion classification. The feature set is initialized with most accurate feature and is expanded by selecting linearly independent features. This feature set formation technique was tested experimentally and compared with straightforward classification using predefined feature set. Results show superiority of our proposed technique by 5-25% for various emotion sets and classification settings.
Keywords :
emotion recognition; speech recognition; emotion sets; minimal cross-correlation criterion; speech emotion classification process; speech emotion multilevel feature selection; speech emotion recognition; Accuracy; Correlation; Emotion recognition; Feature extraction; Speech; Speech processing; Speech recognition; classification; cross-correlation; feature selection; speech emotion;
Conference_Titel :
Electrical, Electronic and Information Sciences (eStream), 2015 Open Conference of
Conference_Location :
Vilnius
DOI :
10.1109/eStream.2015.7119492