DocumentCode :
2774766
Title :
Measuring Opinion Relevance in Latent Topic Space
Author :
Cheng, Wei ; Ni, Xiaochuan ; Sun, Jian-Tao ; Jin, Xiaoming ; Kum, Hye-Chung ; Zhang, Xiang ; Wang, Wei
Author_Institution :
Dept. of Comput. Sci., Univ. of North Carolina at Chapel Hill, Chapel Hill, NC, USA
fYear :
2011
fDate :
9-11 Oct. 2011
Firstpage :
323
Lastpage :
330
Abstract :
Opinion retrieval engines aim to retrieve documents containing user opinions towards a given search query. Different from traditional IR engines which rank documents by their topic relevance to the search query, opinion retrieval engines also consider opinion relevance. The result documents should contain user opinions which should be relevant to the search query. In previous opinion retrieval algorithms, opinion relevance scores are usually calculated by using very straightforward approaches, e.g., the distance between search query and opinion-carrying words. These approaches may cause two problems: 1) opinions in the returned result documents are irrelevant to the search query, 2) opinions related to the search query are not well identified. In this paper, we propose a new approach to deal with this topic-opinion mismatch problem. We leverage the idea of Probabilistic Latent Semantic Analysis. Both queries and documents are represented in a latent topic space, and then opinion relevance is calculated semantically in this topic space. Experiments on the TREC blog datasets indicate that our approach is effective in measuring opinion relevance and the opinion retrieval system based on our algorithm yields significant improvements compared with most state-of-the-art methods.
Keywords :
probability; query processing; relevance feedback; text analysis; TREC blog dataset; latent topic space; opinion relevance; opinion retrieval engine; opinion-carrying word; probabilistic latent semantic analysis; search query; topic-opinion mismatch problem; user opinion; Blogs; Electronic mail; Engines; Portable media players; Probabilistic logic; Q measurement; Semantics;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Privacy, Security, Risk and Trust (PASSAT) and 2011 IEEE Third Inernational Conference on Social Computing (SocialCom), 2011 IEEE Third International Conference on
Conference_Location :
Boston, MA
Print_ISBN :
978-1-4577-1931-8
Type :
conf
DOI :
10.1109/PASSAT/SocialCom.2011.45
Filename :
6113131
Link To Document :
بازگشت